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Summary. We generate Voronoi meshes over three dimensional domains with pre-
scribed boundaries. Voronoi cells are clipped at one-sided domain boundaries. The
seeds of Voronoi cells are generated by maximal Poisson-disk sampling. In contrast
to centroidal Voronoi tessellations, our seed locations are unbiased. The exception
is some bias near concave features of the boundary to ensure well-shaped cells. The
method is extensible to generating Voronoi cells that agree on both sides of two-sided
internal boundaries.

Maximal uniform sampling leads naturally to bounds on the aspect ratio and
dihedral angles of the cells. Small cell edges are removed by collapsing them; some
facets become slightly non-planar.

Voronoi meshes are preferred to tetrahedral or hexahedral meshes for some La-
grangian fracture simulations. We may generate an ensemble of random Voronoi
meshes. Point location variability models some of the material strength variabil-
ity observed in physical experiments. The ensemble of simulation results defines a
spectrum of possible experimental results.

1 Introduction

1.1 Mesh Terminology

A Voronoi mesh has different local structure than the more familiar tetrahe-
dral and hexahedral meshes. However, a triangulation, a hex mesh, a Voronoi
diagram, and a watertight input domain are all examples of simplicial com-
plexes. Space is subdivided into geometric and discrete faces: faces intersect
at a subface or not at all. We call two-dimensional faces facets. In a simplicial
complex faces are not necessarily simplices, the convex hull of d+ 1 vertices.

For simplicity of exposition, we assume that all faces are geometrically
flat. However, the implementation does not require this and the method is
extensible to solid modeling engines with curved domain boundaries. If the
domain boundary is faceted and boundary edges are marked as lying on a
curved facet, we may recover some of the curvature.
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(a) Faceted input (b) background cubes

(c) Voronoi mesh

Fig. 1. A faceted domain remeshed with Voronoi cells. The model is topmod-test.stl
[20], based on the dodecahedron. There are curved surfaces with narrow regions.
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1.2 Maximal Poisson-disk Sampling (MPS)

Maximal Poisson-disk sampling (MPS) selects random points {xi} = X, from
a domain, D. There is an exclusion/inclusion radius r: empty disk means
no two sample points are closer than r to one another; and maximal means
samples are generated until every location is within r of a sample. Di is the
subregion of D outside the r-disks of the first i samples. For a bias-free (a.k.a.
unbiased) sampling procedure, the probability P of selecting a point from a
disk-free subregion Ω is proportional to Ω’s area.

Bias-free: ∀Ω ⊂ Di−1 : P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X, i $= j : ||xi − xj || ≥ r (1b)

Maximal: ∀p ∈ D, ∃xi ∈ X : ||p− xi|| < r (1c)

A maximal r-disk sample (1b) (1c) is equivalent to a maximal sample of
non-overlapping r/2-disks, known as a random close packing. Sphere pack-
ings appear frequently in nature: e.g. sand, atoms in a liquid, trees in a for-
est. Processes generating packings include random sequential adsorption, the
hard-core Gibbs process, and the Matérn second process. Algorithmically, by
successively generating points and rejecting those violating (1b) it is easy to
get a near-maximal sample if run-time is unimportant. In recent years the
community has developed unbiased MPS algorithms with near linear perfor-
mance [10, 9, 13]. There are variations based on advancing fronts that have
biased point locations, violating (1a), but may be more efficient [30].

1.3 Voronoi Diagrams

A point seed xi defines a Voronoi cell, V , the subset of the domain that is
closer to that seed than any other seed [11]. The cell equation is related [25]
to the maximal sampling condition (1c).

Vi = {p} ∈ D : ∀j, ||p− xi|| ≤ ||p− xj || (2)

For point sets, a dual of the Voronoi diagram is a Delaunay triangulation.1

Voronoi meshes differ from the more familiar unstructured primal meshes. Pri-
mal elements are simplices — or perhaps squares or hexahedra, a.k.a. cuboids
— with a fixed number of subfaces with a particular structure. Vertices may
be in an arbitrary number of elements. (The maximum degree is related to the
minimum angle.) For Voronoi meshes the situation is reversed by dimension.
Vertices have nominally fixed degree: e.g. three edges in two-dimensions, bar-
ring extra cocircularity. But cells have arbitrary subfaces, and relationships
between subfaces are variable, position dependent. Traversing an element may

1Georgy Voronoy being the doctoral advisor of Boris Delone.
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involve walking dynamic datastructures. For performing analysis, developing
shape functions for Voronoi elements is non-trivial [2].

Many codes are available for computing Voronoi tessellations, and related
structures, for point sets. Fortune [11] provides a very fast algorithm for 2d,
and Qhull [6] up to 4d. (Qhull is used in the current version of Matlab.) Some
codes extend to arbitrary-dimensions, weighted points, handle degeneracies,
and use a variety of algorithms [1].

Voronoi meshing algorithms add seeds at selected locations for cell quality,
and cells conform to the domain boundary. Codes are less common and less
universal because the desired seed locations are application specific. Many
methods are based on Centroidal Voronoi Tessellations (CVTs), where each
seed lies at the center of mass of its cell. This is usually achieved through
iterative adjustment of seed location. See Du et al. [7] for a survey of CVTs.
While it is possible to generate well shaped cells using CVTs, the geomet-
ric regularity of seed locations that arises is particularly undesirable for our
fracture simulations. Clipped Voronoi diagrams truncate cells at the domain
boundary. This is efficient if some background mesh of the domain is already
available [32] and can answer point-location queries. (In contrast we achieve
efficiency by exploiting the locality arising from our dense uniform sampling.)

Voronoi diagrams for 2d curved surfaces embedded in 3d have numerous
applications, especially remeshing surfaces for a reduced numbers of points
or improved quality. Since they are hard to compute, the restricted Voronoi
diagram [31] approximates geodesic distance by straightline distance.

1.4 Simplicial Meshes

Methods for generating primal meshes are more developed because they have
more applications. Triangular and tetrahedral meshes based on the Delau-
nay principle are ubiquitous in finite element methods. A common method
is Delaunay refinement [5, 24, 28, 29]. Fu [12] provides a complete remeshing
pipeline using a CVT. Some primal meshing codes will generate a Voronoi
diagram of the mesh points [27], but this is not the same as selecting Steiner
points to generate Voronoi cells meeting specific quality requirements.

Disk packings have been used to generate primal meshes, because of the
relationship between empty Delaunay circles and disks maximally covering
the domain. In prior work [8] we generated constrained Delaunay triangular
meshes of two-dimensional non-convex domains using maximal Poisson-disk
sampling. Miller et al. [17] used maximal disk packings to generate tetrahedral
meshes with bounded radius-edge condition. Shimada and Gossard uses a form
of disk packing (“Bubble Meshes”) for 2d and 3d domains [25] and curved
surfaces [26]; point locations are iteratively adjusted with a force network,
and points are added and deleted.
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1.5 Application Needs

Some applications, notably fracture mechanics, prefer Voronoi meshes. (A.k.a.
“Voronoi froths” because of their similar geometry to soap bubbles.) See
Bishop [2] for an overview of fully Lagrangian fracture simulations over
Voronoi froths, including element formulation and cell movement.

Fracture simulations over structured grids and CVTs produce unrealistic
cracks. For MPS Voronoi froths, the orientation of edges with respect to the
coordinate system is uniformly random, and has other desirable statistical
properties [4]; cracks initiate and propagate more realistically [3]. Families of
random meshes are desired because they represent the random variation in
material strengths, leading to variations in crack locations and propagation
directions. The ensemble of simulation results predicts a range of possible
experimental outcomes. For other physics simulations, a mesh ensemble can
also be used to detect dependence on mesh artifacts.

Voronoi tessellations model polycrystalline structures well. Infinite do-
mains are common: no internal boundaries and periodic boundary conditions.
Each cell is a grain, a region with a particular crystal orientation. Polycrystal
simulations often model fracture, the material being weak at grain bound-
aries. However, grains are typically divided into many primal finite elements,
which models finer scale phenomena than our target fracture simulations.
Seed locations model crystal initiation sites — CVT is often used — and so
are fundamental to the domain and not a free choice as in larger scale frac-
ture mechanics. However, both applications have in common the problem of
obtaining good quality cells by removing small cell features [22].

Fracture domains are often rectangular blocks with internal boundaries;
non-convex domains with non-trivial holes are also common. The mesh must
be constrained to contain boundary features: each feature must be represented
by a well-defined submesh, an exact subset of mesh elements. To achieve this
we clip Voronoi cells by boundary facets. No part of the domain boundary
is strictly-interior to a cell. Seeds are placed on concave boundary edges to
ensure that a Voronoi element is visible to its seed, and is star-shaped.

1.6 Cell Quality

Quality metrics for simplicial meshes are well developed [16]. Paoletti consid-
ers mesh smoothing to optimize the interpolation error for convex polyhedral
cells [21]. For Voronoi meshes, typical metrics include the aspect ratio of cells,
the ratio of the radii of the smallest containing sphere to largest contained
sphere. MPS leads to absolute bounds on both radii, and consequently a
bound on the aspect ratio. MPS also leads to natural bounds on dihedral an-
gles, similar to the angle-bounds on triangles from a Delaunay triangulation
of a maximal sampling; see Section 3. There is a weak relationship between
Voronoi cell quality and dual Delaunay tetrahedra quality. Except where cells
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are clipped by the domain boundary, Voronoi vertices are the centers of cir-
cumspheres of Delaunay tetrahedra. A cell contains all the centers of all the
spheres of the tetrahedra sharing a common vertex. Hence an upper bound
on the radius of Delaunay spheres bounds the outsphere radius of Voronoi
cells. The Voronoi insphere radius is related to the shortest Delaunay edge,
which in turn is related to the smallest Delaunay circumsphere and smallest
angle. However, it appears impossible to convert tetrahedral quality directly
into Voronoi cell quality, because each Voronoi cell depends on multiple tetra-
hedra.

For fracture over Voronoi meshes, as in many simplicial mesh applica-
tions, the timestep is determined by the shortest edge length. Since there is
no natural bound on cell edge length, short edges are collapsed to increase
the timestep. In 3d meshes, collapsing edges causes facets to be non-planar.
(A facet may also be non-planar because it lies on a curved domain bound-
ary.) The non-planarity reduces the simulation accuracy, by impeding facture
formation. Thus collapsing short edges that are too long causes problems,
and these two motivations are in competition. Additional measures may be
important: e.g. electromagnetic simulations desire facets of uniform area.

1.7 Summary of Contribution

We are able to construct good quality Voronoi meshes for non-convex domains
in three dimensions, suitable for fracture simulations.

The maximal sphere-packing approaches to primal meshing [8, 17] differ
from the current work mainly in how the domain boundary is handled. Pri-
mal approaches actively sample the boundary of the domain in a hierarchy by
dimension: sample domain vertices, then edges, facets, and finally the interior
of the domain. This is done to avoid a sample point (simplex vertex) arbi-
trarily close to the boundary, leading to unbounded simplex angles. Boundary
sampling is not needed as much to achieve good quality Voronoi cells. We pre-
sample large-angle domain edges. Non-manifold internal boundaries must
also be sampled. In contrast, primal meshing algorithms often take no special
care around concave features, and small-angle features are more problematic.
For bounded aspect ratio, we may do some preprocessing around small-angle
features as well. Small edges are collapsed.

The mesh we create is the clipped Voronoi diagram of the seeds: cells are
truncated by the domain boundary. This is necessary because unclipped cells
may be infinite and have vertices outside the domain. The dual of the Voronoi
mesh are tetrahedra, except where small edges have been collapsed. However,
except where we seeded reflex edges, these tetrahedra do not have vertices on
the boundary of the domain: they are inside the domain. Thus our Voronoi
mesh is not the dual of a body-fitted tetrahedral mesh. The Voronoi submesh
on the domain boundary is not an ordinary 2d Voronoi diagram. (However,
relative-interior 2-cells may be a weighted Voronoi diagram of the projection
of nearby seeds to the domain boundary.) All of the cells are convex, except
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concave-edge cells may be merely star-shaped, visible to the seed on the edge.
These may be further subdivided into convex cells for fracture simulations.

Our algorithm also differs from the literature in how the Voronoi dia-
gram is constructed. Our MPS algorithm [10] provides a background grid of
cubes — see Figure 1 — and links between a sample seed and the cube that
geometrically contains it. This provides locality information, so determining
which seeds are adjacent is not a time consuming step. Iteratively intersect-
ing Voronoi cells with perpendicular-bisector hyperplanes is efficient in our
context. MPS takes expected O(n log n) time (or O(n) for finite precision)
and uses Θ(n) deterministic space, where n is the output size. Exploiting the
background grid and the uniformity of the sampling, constructing the Voronoi
cell for a point is a constant-time and space operation. The overall complexity
is the same as for MPS.

2 Algorithm

• Protect concave boundary features with random disks.
– Preprocess sharp edges, reduce r for close edges, as needed.

• Sample the interior of the domain, until the set of disks is maximal.
• Generate Voronoi cells for sample points, trimmed by the boundary.

– Weld vertices to eliminate small edges.

We describe sampling before we describe protecting, because it makes the
exposition more clear. Protecting uses a form of sampling.

2.1 Sampling

We use the unbiased maximal Poisson-disk sampling algorithm described in
Ebeida et al. [9]. An implicit background grid of cubes locates sample points
and determines if they are disk-free. The cubes approximate the remaining
disk-free area. We discard (the indices of) cubes that are known to be com-
pletely covered by disks. We successively refine the background grid, subdi-
viding all uncovered cubes into eight. Keeping all the cubes the same size
allows generating an unbiased candidate point in constant time, and, more
importantly, reduces the memory needed.

Each cube C has diagonal length r and side length r/
√
3, and contains at

most one point. (The exception is cubes cut by the domain boundary. In the
current software these cubes have no sample points. In future versions a cube
C might have one sample point for each connected component of C ∩D.)

2.2 Protect the Boundary

Reflex Edges

We pre-sample concave features of the boundary, in order to obtain star-
shaped cells with the seed in the kernel. A concave edge is any edge of the
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Fig. 2. (a) Sampling reflex domain edges more densely, with radius re = r/
√
2,

ensures that domain edges are completely inside the Voronoi cells for those samples.
The same principle may be used to protect non-manifold facets. (b) 2d cartoon of
3d faces.

domain with a reflex dihedral angle, " > 180◦. (Reflex with respect to the
interior of the domain.) For each convex edge, we place a sample at both its
domain vertices. We maximally Poisson sample the remainder of the edge with
a smaller radius, re = r/

√
2. If a sample point xi not on the edge is at least

r from the edge samples, trigonometry shows that xi must be at least r/
√
2

from the edge; see Figure 2(a). This ensures that every point of a convex edge
is closest to one of its edge samples. The exceptions are a sharp edge, a convex
edge that also makes a small angle with a second edge; and a close edge, a
convex edge that is also closer to a disjoint domain facet than r.

Non-Manifold Geometry

Non-manifold geometry can be protected using the same principles, but with
a second

√
2 constant factor. We have not implement it yet. Non-manifold

internal edges with no attached domain facets can be protected using the
same radius as manifold boundary edges r/

√
2. For non-manifold facets, we

may sample their attached edges and vertices with radius r/2, then the facets
themselves with radius r/

√
2. This will result in all domain edge points being

closest to an edge-seed, and all domain facet points closest to a bounding-edge
seed or facet-seed. Voronoi cells for facet-seeds will be clipped into two, one
for each side, but cells will agree on the domain facet. The penalty would be
another factor of

√
2 in the worst-case aspect ratio in Section 3.

Sharp Features

If they are near a convex edge, sharp and close features may require extra
care to obtain star-shaped cells. The extra work would be similar to what is
done for primal meshes.
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Reducing the sampling radius r is sufficient to handle close edges. Our
plan to handle sharp edges is to first isolate their common vertex v. We may
introduce points a fixed distance d from v, on the surface of a sphere of
radius d. We place a sample at the intersection of this sphere and every edge
of v, and also maximally sample the sphere in the interior of the domain.
Depending on the smallest domain angle at v, some of these points might be
close together, say distance rv. The remainder of the domain can be sampled
with radius r′ = minv rv and r′e = r′/

√
2 to obtain an aspect ratio bound on

cells not dependent on feature size, or with the original radius and potentially
degraded aspect ratio cells.

In the future, we may protect reflex and non-manifold features with spheres
placed more randomly and in the interior of the domain, not on the boundary.
This has some similarity to our “interior-disks” strategy for primal meshes
[10]. The advantages would be improved aspect ratio and dihedral angle
bounds, and a greater variation in dihedrals between cell facets and boundary
facets. The disadvantage is the process is more complicated.

2.3 Generate Voronoi Cells

We use the locality of sample points in the background grid to generate
Voronoi cells. We shall see in Section 3 that Voronoi cells sharing a facet
have seeds that are at most 2r apart. The only relevant seeds are in cubes
within a constant size template T of indices around the seed’s cube. The
Voronoi cell for any seed is constant size, and may be computed in constant
time.

The template T is a 9 × 9 × 9 grid of cubes centered at C, trimmed to
remove cubes that have no corner within 2r of the closest corner of C. V
is initialized to the bounding box of T . The cubes contains pointers to the
domain boundary faces (and their Voronoi cells) crossing them. We trim the
bounding box by these boundary faces. We successively insert candidate seeds
xj from T , and trim V by the perpendicular bisecting plane to xixj .

2.4 Weld Small Features

The weld tolerance w is a free user parameter; w = r10−4 is reasonable.
Voronoi vertices that are less than w apart are treated as one, on the fly as
a cell containing them is generated. This will remove short edges and small
angles. (Large angles do not occur because of the facet dihedral angle upper
bound.)

3 Voronoi Cell Quality

See Figure 2(b). We call a Voronoi face a border face if it lies on the domain
boundary, to distinguish it from unpartitioned domain boundary faces. A seed
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is a vertex-seed (with a vertex-cell) if the seed lies on a domain vertex; an edge-
seed if it lies on a domain edge, necessarily reflex. Otherwise they are fringe
if any of the cell’s subfaces are border faces, or simply interior.

3.1 Aspect Ratio Bounds

Let outradius Ro be the radius of the outsphere So, the smallest enclosing
sphere of a Voronoi cell. Inradius Ri is the radius of the insphere Si, the
largest contained sphere. The aspect ratio of a cell is Ro/Ri > 1. The centers
of So and Si are not in general xi, but spheres centered at xi provide bounds
on Ro and Ri. Let Sp(R) denote the sphere of radius R centered at p. We
analyze cells prior to welding.

Lemma 1. Ro ≤ r.

Proof. This follows trivially from maximal sampling. Since Voronoi cells are
trimmed, all points p of a cell are in the domain. The domain is maximally
sampled, so p is at most r away from some seed. By definition xi is the closest
one. Sxi(r) contains xi’s Voronoi cell.

Lemma 2. For interior cells, Ri ≥ r/2.

Proof. Two seeds are at least distance r apart if at least one of them is interior.
Sxi(r/2) is contained in xi’s Voronoi cell.

Corollary 1. For edge-cells and vertex-cells Sxi(re/2) ⊂ V , for fringe and
interior cells Sxi(r/2) ⊂ V , except where trimmed by the domain boundary.

For non-interior cells, the smallest inradius might be driven by a small
domain angle, or a small distance between disjoint faces on the domain. Let
·min denote the smallest angle or feature over all the domain. Let the local
feature size lfs [23] at point p be the smallest radius of a sphere at p con-
taining two boundary faces that do not share a common subface. Let twice
the feature size fsmin be the smallest distance between two disjoint boundary
faces. (fsmin = min lfs, achieved at the midpoint of the smallest distance.)
We consider several types of small angles. Let 2φ be a domain dihedral angle
between two planar facets meeting at an edge; 2χ a domain angle between an
edge and a facet, or two facets meeting at a vertex; and 2ψ a domain angle
between two edges. Let 2ω be the aperture of the largest right-circular cone
with apex at a domain vertex or point on an edge, inside the domain.

Claim. ω ≥ min(φmin, 2χmin/3,ψmin).

The tighter dependence on χ occurs for an equilateral triangular cone, where
several small angles together allow a smaller ω. In any event, ω is a domain-
specific constant dependent on its small angles.

The following lemmas consider the above quantities as the limiting condi-
tions on Ri in sequence. For curved domains, the smallest local angle would
be the limiting quantity. In the proofs we assume |xi∂D| ≤ r/2, because oth-
erwise Corollary 1 implies the bound from Lemma 2 applies.
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Fig. 4. (a) A minimum insphere limited by both a small cone angle ω and a small
lfs from a nearby disjoint face. The largest insphere may be inside an image of the
shown ω sphere, translated and scaled towards xi so that it is closer to v than the
disjoint face is to v. (b) The minimum dihedral angle between Voronoi facets.

Lemma 3. For non-interior cells with exactly one border facet, Ri ≥ r/4.

Proof. See Figure 3(a), and Mitchell and Vavasis [19]. xi lies inside the do-
main, so the border facet excludes at most half of Sxi(r/2). In particular the
sphere with radius r/4, and diameter on the perpendicular to the border
facet’s plane through xi, lies inside the r/2 sphere at xi.

Corollary 2. Edge-cells containing only superfacets of a reflex border edge
also have Ri ≥ r/4.

Proof. Since reflex boundary edges are sampled more closely, adjacent edge-
cells might limit the extent of the cell to re/2 in the direction of the domain
edge. However, the planes at distance re/2 from xi perpendicular to the do-
main edge do not intersect the radius r/4 sphere we constructed in Lemma 3.

Lemma 4. For a non-interior cell containing only border edge e and super-
facets with convex dihedral 2φ,
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Ri ≥
r sinφ

2(1 + sinφ)

Proof. See Figure 3(b) or Mitchell [18] Figure 4.14. The smallest insphere
occurs when xi nearly lies on e. In this case Sxi(r/2) contains a sphere of
radius R centered at point p with sinφ = R/(r/2−R).

Corollary 3. For non-interior cell touching boundary faces sharing vertex v,

Ri ≥ min

(
re
4
,

re sinω

2(1 + sinω)

)
.

Proof. Here we must use re instead of r because some boundary edges of v
might be reflex and be sampled with re.

Lemma 5. For a non-interior cell touching two disjoint boundary faces,

Ri ≥ min(re, fs)min

(
1

4
,

sinω

2(1 + sinω)

)
,

Proof. See Figure 4(a). Open sphere Sxi(fs/2) contains no disjoint faces, so
one of the prior lemmas applies with r or re replaced by fs.

To see that these lemmas are tight, place xi at the cone apex. Then place
a second seed at distance re along a reflex edge, or a disjoint face at distance
fs along the axis of the relevant cone. Combining the insphere and outsphere
lemmas yields the following.

Theorem 1. Prior to welding, interior Voronoi cells have aspect ratio A ≤
2, fringe and edge-cells A ≤ 4max(1, r/fs)max (1, (1 + sinω)/(2 sinω)) , and
vertex-cells

A ≤ 4max(
√
2, r/fs)max

(
1,

1 + sinω

2 sinω

)
.

The worst case insphere and outsphere can be achieved simultaneously
in many cases by achieving the maximum cell expanse r in directions not
restricted by the boundary, roughly perpendicular to the ω cone axis. For
example, the set of facets containing the common vertex in Figure 4(a) could
be modified to extend further up and down, without increasing the insphere.

Welding increases Ro by at most w, and decreases Ri by at most w.

3.2 Dihedral Angle Bounds

Lemma 6. Interior cells have interior dihedral angles in [60◦, 150◦]. Non-
interior cells have border-internal facet dihedrals in [30◦, 150◦], or [20.7◦, 159.7◦]
for cells near more than two border facets. Border-border facet dihedrals are
determined by the domain.
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Proof. For interior cells the dihedral angle is equal to the supplement of
" xaxixb. Each side of ,xaxixb is between r and 2r by the maximal pack-
ing, and the circumcircle at most r, because the circumcenter is a point on
the edge. From [8] Corollary 4, " xaxixb is between 30◦ and 120◦. This shows
[60◦, 150◦] for interior cells.

For non-interior cells, let θ be “half” the dihedral; see Figure 4(b). For edge
e, let f be its interior facets and g its border facet, and h the plane through e
and xi. Let θ = " fh. By Lemma 1 the closest point to v on the line through
e may be at most r away. The closest point of the plane through f as at least
r/2 from xi so sin θ ≥ 1/2. The exception is if f is defined by two seeds on
a reflex boundary edge, in which case we have re/2 and sin θ ≥

√
2/4. For

non-internal cells θ is a tight lower bound on the dihedral because at worst
the other facet through e might be coplanar with xi. It cannot be less than
θ because trimmed Voronoi cells are star-shaped with xi in the kernel. Since
reflex domain edges are protected, the supplement of θ is an upper bound on
border-internal facet dihedrals. For interior cells 2θ is the minimum dihedral
angle, which is another way to get the lower bound of 60◦.

For Voronoi meshes for fracture simulations, seeds on the boundary are
undesirable because the angle between a domain facet and an adjacent cell
facet is always exactly 90◦. For two dimensional meshing problems, this angle
may be randomized by moving the mesh vertex on the boundary [2], but in
higher dimensions this leads to non-planar facets.

Interior Voronoi facets are convex, but otherwise the smallest angle be-
tween edges may be arbitrarily close to zero. The largest angle between edges
is bounded by the dihedral angle between faces; since this has an upper bound
any facet with a large 2d-aspect ratio must have a small angle and a short
edge. Short edges and small angles are resolved with welding, collapsing a
short edge to a single vertex.

4 Experimental Results

Figures 1, 5, and 6 shows some initial example meshes. Because manifold
domain facets are not sampled, they may have small-looking border facets.
These facets are typically for seeds about r from the boundary; these fringe
cells have aspect ratio between 1 and 2.

We report the aspect ratio and dihedral angles of convex cells achieved
in practice. Most commercial software uses functions that capture features of
aspect ratio but are easier to compute. Computing the aspect ratio is non-
trivial, because the centers of the insphere and outsphere are not necessarily
the seed. Miniball software computes the outsphere of the points of a cell [14].
For the insphere, a general solution is to compute the medial axis skeleton
of each cell and consider the solution value at each medial axis vertex, or a
voxel-based approximation. We are currently developing an efficient method
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Fig. 5. I-beam Voronoi meshes at three different resolutions, with cut-away along
cell boundaries. At four domain vertices, two convex edges meet one concave edge.
The non-convex, but star-shaped facets for the vertex- and edge-cells were subdi-
vided into convex facets by the rendering engine.

for convex polyhedra based on walking the medial axis, traveling in directions
where the insphere increases. For this paper we employed a brute force ap-
proach for convex cells that computes the insphere for all combinations of four
facets, and determines if that insphere is clipped by any other facets.

See Figures 7 and 8. Our quality example is a Voronoi mesh of the unit
cube with 26,362 seeds (cells) and r = 0.04 spacing. 23,196 seeds are interior,
and 3,166 are fringe. The cells have 163,808 vertices. There are no edge- and
vertex-cells since the unit cube has 90◦ dihedrals.

The max and min quality values diverge from the theory due to a variation
in the packing near the boundary: no background cubes that cut the boundary
get a sample. We will remove this variation in future software versions.

5 Conclusion

In summary, we have demonstrated the ability to generate three dimensional
polyhedral meshes as the clipped Voronoi cells of random points. The mesh
is different from the dual of a boundary-fitted tetrahedral mesh. Voronoi cell
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Fig. 6. GEO1.stl [15], based on a rook chess piece.

quality is provably bounded because the point samples are the centers of
uniform empty disks, and because the sampling is maximal.

We have several planned improvements in the near-term. We plan to imple-
ment non-manifold (two-sided) internal boundary facets, edges, and vertices.
These are all essential for crack simulations. We also plan to turn our research
code into a user-ready tool, with a simplified interface for parameter selection.
We seek the best-element-quality strategy for decomposing non-convex edge-
and vertex-cells into convex cells for fracture analysis. We are researching
alternatives to collapsing small edges based on seed location adjustment, be-
cause non-planar facets cause problems for the fracture simulations.

We plan to compare our running time and output quality to the alterna-
tives. We are aware of no alternative that is solving the exact same problem,
but we may compare to point-set Voronoi codes, primal meshing codes that
also produce Voronoi cells, and centroidal-Voronoi tessellation codes.

We suggest the community engage in Voronoi mesh R&D in the following
areas: graded meshes; quality metrics, both codes and theory; quality improve-
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Fig. 7. Aspect ratios for a Voronoi mesh of a unit cube with r = 0.04 and 26k cells.
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Fig. 8. Dihedral angles for a Voronoi mesh of a unit cube. The interior-interior
dihedral distribution is the mirror image of the angle distribution of 2d MPS De-
launay meshes [8]. Border-interior dihedrals are symmetric because the dihedral on
one side of an internal facet is the supplement of the dihedral on the other.

ment strategies; and understanding the relationship between mesh quality and
simulation quality. These have been important for primal meshes.
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